Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Theor Biol ; 528: 110838, 2021 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-34303702

RESUMO

Cancer cells obtain mutations which rely on the production of diffusible growth factors to confer a fitness benefit. These mutations can be considered cooperative, and studied as public goods games within the framework of evolutionary game theory. The population structure, benefit function and update rule all influence the evolutionary success of cooperators. We model the evolution of cooperation in epithelial cells using the Voronoi tessellation model. Unlike traditional evolutionary graph theory, this allows us to implement global updating, for which birth and death events are spatially decoupled. We compare, for a sigmoid benefit function, the conditions for cooperation to be favoured and/or beneficial for well-mixed and structured populations. We find that when population structure is combined with global updating, cooperation is more successful than if there were local updating or the population were well-mixed. Interestingly, the qualitative behaviour for the well-mixed population and the Voronoi tessellation model is remarkably similar, but the latter case requires significantly lower incentives to ensure cooperation.


Assuntos
Comportamento Cooperativo , Teoria dos Jogos , Evolução Biológica , Contagem de Células
2.
J R Soc Interface ; 16(152): 20180918, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30913980

RESUMO

Cooperation is prevalent in nature, not only in the context of social interactions within the animal kingdom but also on the cellular level. In cancer, for example, tumour cells can cooperate by producing growth factors. The evolution of cooperation has traditionally been studied for well-mixed populations under the framework of evolutionary game theory, and more recently for structured populations using evolutionary graph theory (EGT). The population structures arising due to cellular arrangement in tissues, however, are dynamic and thus cannot be accurately represented by either of these frameworks. In this work, we compare the conditions for cooperative success in an epithelium modelled using EGT, to those in a mechanical model of an epithelium-the Voronoi tessellation (VT) model. Crucially, in this latter model, cells are able to move, and birth and death are not spatially coupled. We calculate fixation probabilities in the VT model through simulation and an approximate analytic technique and show that this leads to stronger promotion of cooperation in comparison with the EGT model.


Assuntos
Modelos Biológicos , Animais , Epitélio/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...